yttrium | Stable | Atomic mass* | Mole | |-----------------|--------------|----------| | isotope | | fraction | | ⁸⁹ Y | 88.905 8483 | 1.0000 | ^{*} Atomic mass given in unified atomic mass units, u. Half-life of redioactive isotope Less than 1 second ## Important applications of stable and/or radioactive isotopes Isotopes in medicine 1) Carbon nanotubes (CNT) labeled with ⁸⁶Y were proven soluble when they were injected into mice. CNT's are nano scaled carbon tubes that are being examined to further research in the area of nanobiotechnology. The mice were injected via intravenous (through a vein) or intraperitoneal (directly into a body cavity) injection. With the ⁸⁶Y CNT and then examined using a PET scan to observe whether or not the ⁸⁶Y had been flushed from their system. The PET scan determined that the accumulation of ⁸⁶Y were in the liver, kidney, and spleen with very rapid blood clearance. Figure 1: How to make ⁸⁶Y CNT. Figure 2: PET images of mice post injection of ⁸⁶Y. 2) Radiomicrosphere therapy (RT) that uses ⁹⁰Y microspheres is a proven therapy that helps treat hepatic/liver cancer. A study was done to between 2004 and 2007 to see what if gastrointestinal (GI) ulcers were a deathly side effect of these ⁹⁰Y microspheres had in treating people with liver cancer. A group of 27 people varying in age and severity of cancer were the test subject in this study. The study proved that while GI ulcers were a noted but rare side effect of being treated with the ⁹⁰Y microspheres, and if the ulcers did occur then they would need to be treated with aggressive surgical means. Figure 3: Ultrapure ⁹⁰Y.